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Observation of breather resonances in Josephson ladders
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We report experimental observation of resonances excited by nonlinear localized(stitibeeathersin
Josephson junction ladders. The rotobreathers are found to persist in a frequency range that allows for their
resonant interaction with linear electromagnetic modes in the ladders. This interaction leads to nearly constant
voltage steps on the current-voltage characteristics. We also present numerical simulations that agree well with
experimental data and confirm the resonant interaction between breathers and linear waves. Resonances occur
at the base frequency as well as higher harmonics of the linear modes. The observed substructures on the
resonances are attributed to the cavity modes for the ladders. Both experimental and simulated current-voltage
characteristics show good quantitative agreement with an analytically calculated dispersion relation for linear
electromagnetic modes.
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[. INTRODUCTION to the “retrapping” currenty, =4a/7<1. Here,(-) repre-
sents the average in respect to time. The static solution rep-
In recent years, there has been rising interest towards thresents a junction in superconductifigs’ ) state with a con-
phenomenon of dynamic localization in homogeneous, yestant phase difference, while the dynamic solution
discrete nonlinear latticelsl,2]. While substantial progress characterizes a resistivéwhirling” ) junction with ¢ in-
was made on the analytic and numerical edge, it has hagreasing with timg" R” state). The simultaneous presence of
pened only recently when the first experimental evidencethese two different states for a certain range of the external
for intrinsic localized modegalso known as discrete breath- parametery is the principal reason for the existence of roto-
ers were reported. Discrete breathers were found in coupletireathers in arrays of coupled Josephson junctions.

optical wave guide$3], low-dimensional crystal§4], anti- Floria et al. [9] proposed a special array, the so-called
ferromagnetic materialss], and arrays of coupled small Jo- Josephson ladder, as a relatively simple system in which
sephson junctions, so-called Josephson ladde. rotobreathers should be observed.

Depending on the type of “particles” forming a lattice, A schematic view of a Josephson ladder is given in Fig.
discrete breathers may be formed of eithésrational, or ~ 1(a). Crosses indicate Josephson junctions, straight lines re-
rotational localized modes. The latter, also namamio- fer to superconducting electrodes. Arrowheads sketch the di-
breathers are present in lattices constructed of rotors such agection of external bias currents. The depicted ladder consists
pendulums or spins. Rotobreathers correspond to stated eleven vertical junctions arranged in parallel. These junc-
where the kinetic energy is stored in one or a few whirlingtions are interconnected via superconducting leads, inter-
sites, while the remaining lattice oscillates with an amplituderupted by horizontal junctions. One cell of the ladder is
that exponentially decays away from the breather center. formed by two horizontal and two vertical junctions. If the

A nice example for a nearly ideal rotor is a small Joseph-orizontal and vertical junctions differ in parameters, the lad-
son junction. An underdamped, current biased junction igler isanisotropic The anisotropy parameteris defined as
well described within the resistively-capacitively-shunted

junction (RCSJ model[8]. Its dynamic behavior, character- (a) f 9
ized by the superconducting phase differeggés given by PUNPUEPIEPIP PP S P S
the simple equation L £ 1T T\§ T Tl T T
o+ ap+sing=ry (1) X X X X X X X XuX X X
o . . 1 11 1s8y1 1 1 1 1
which is identical to the dynamic equation for the anglef F F F F F OF(F F F F F

a damped pendulum subject to a constant torgué&or a 1 +
Josephson junction, Edql) is obtained when time is mea-
sured in units of the inverse plasma frequenﬂgl. v
=1/l is the bias current normalized to the junction critical (b) (©)

currentl.. The damping parameter=+®y/27I .R°C is '"—‘T—"‘ '"—m—'"
typically small (#<1). Ris the junction subgap resistance, I I R o

C is the junction capacitance, anbl, is the magnetic flux

quantum. The junction parameters may be specified in a wide F|G. 1. (a) Schematic of a Josephson laddeentral shaded
range in fabrication and can be tuned during experiment. area and the biasing circuitupper and lower nonshaded parés

For the range €& y<<1, Eqg. (1) has a static solutiop  described in the text. The typfl (b) andB1 (c) breather states are
=arcsiny. A dynamic solution with{¢)~ y/a exists down  studied in this paper. Bold crosses indicate resistive junctions.
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the ratio of the horizontal and vertical junction critical cur- B breathers. Furthermore, we present numerical simulations

rents,p=Icpn/lc,. that are in good agreement with the experimental results and
The vertical junctions can be biased homogeneously bylispersion analysis.

injecting equal DC-currentkinto every node of the lower-

electrode row and extracting the same currents at every node 1l. MODELING JOSEPHSON LADDER DYNAMICS

of the upper row. In an experiment, this is realized by inject-

ing the currentlg into node 1 of the biasing circuit and

extracting the same current from node 2. If the resisRys

are large in comparison to the resistances of the Josephs

junctions, the same normalized currents 1/1.=1g/[1:(N

The dynamical variables for a Josephson ladder are the
superconducting phase differences across the upper horizon-

& junctions#,,, the vertical junctionsp,, and the lower-

horizontal junctionss, . Within the RCSJ model for a single

+1)] are fed into every ladder node, wheds the number junction, its dynamics are governed by Ef). Together with
Kirchhoff’'s current conservation law for each node and the

of ladder cells. . R
A rotobreather is formed inside the Josephson ladder ifluxCid quantization in each cell of the ladder, a set of equa-

one or a few vertical junctions are in the resistRestate, tions for the time _evqution of the Josephson phases in the
while the remaining vertical junctions reside in tBestate. ladder may be derived as [i2,14,16

TheR state of the junction is accompanied by a voltage drop 1

across this junction. In order to meet Kirchhoff’'s voltage  &,+ a@,+sing,=y+ —
conservation law, at least one more junction inside the loop Bu
containing the whirling vertical one must also exhibit a non- 1

zero voltage. Depending on the number of whirling junctions y ' i - = _7
inside a loop, different breather types are distinguished in Yot adn® Sy, ﬂBL(V¢n+¢n ¥
Josephson ladders. Figureyland 1c) show two elemen-
tary types, the “asymmetric’ or typed breather, and the S o tsing =L(V T @
“symmetric” or type B breather. Thesizeof a breather(in- " n " 3B PnT ¥n™ ¥n)-

dicated by the number behind its letter, e&yl, A2, etc) is

given by the number of resistive vertical junctions. However,Here, the discreteness paramggr=2mLI:/®, is the ratio

we want to note that this rough classification does not tak®f the self inductance of a cell and the Josephson induc-
into account the exact internal dynamic state of the breathefance®o/2ml of a vertical junction.V and A represent the

A breather may be detected inside a Josephson ladder tjjscrete first derivativey f,=f,, ., —f,, and the discrete La-
measuring the voltage drops between two different verticaPlacian,Af,=f,_;—2f,+f,.,, respectivelyn is an inte-
junctions of the ladder, e.g., between the center nodes 3 ari€r representing the cell number. For open boundary sys-
4, and between the boundary nodes 5 and 6. If a breather {§ms, without externally applied magnetic fields, the proper
present in the center of the ladder, a finite voltage will beequations for the boundary phasgsandey ., are obtained
detected in 3—4, while the voltage across 5-6 is zero. by putting ¥o= o= ¢n+1= ¥Un+1=0, ¢o= @1, and oyn4»

A large variety of different rotobreather states has been= ¢, ,, whereN is the number of cells of the ladder.
observed and studied in experimefs7,10 and in numeri- To determine the spectrum of extended small-amplitude
cal simulations[11-13. The experiments reported so far linear modes, Eqs(2) are linearized around a suitable
concentrated on the principal identification of different stategyround state. When the ladder is homogeneously biased by a
and the study of their stability regions in relation to biascurrenty, this ground state is characterized py= arcsiny

(Aen+Viho-1—Vih_1),

current. for all n. Inserting the ansatz

Apart from breathers, Josephson ladders also exhibit dy- '
namical states like electromagnetic cavity modes and travel- @, =de'an-en, (33
ing magnetic vortice§14,15. The cavity modes correspond ,
to small amplitude oscillatory eigenmodes of the lattice of Yp="e'@ Y and (3b)
Josephson junctions. A dispersion relation for such linear
modes was derived and verified in experiment in R&d). Yo=Tellan-et), (30

Up to now, experimental breather investigations were fo-
cused on cases where the frequencies of the breather stagid neglecting dampingx=0), the relation
were above the linear mode spectrum. However, it has been ) 5
found numerically in Ref[11] that the interaction with ex- wi=F*JF° -G (4)

tended lattice modes may be survived by a breather and leads )
to observable resonant steps in current-voltage characteri$ obtained[12,14, where F=1/2+1/(7B) +1/2J1—vy

tics. Miroshnichenkeet al. [12] recently performed numeri- +1/BL(1—cosq) and G=[1+2/(7B)]v1—y"+2/B (1

cal studies of resonances between typbreathers and lat- —¢0s0). An additional mode is represented by=1.

tice modes, showing that step positions on current-voltage Relation (4) describes a lower, almost dispersion-free

curves may be mapped by the linear wave dispersion relédranch w_ and an upper branch, with ¥=—-¥ [12].

tion. Since any ladder is of finite size, only a limited number of
In this paper, we report on the experimental observatiorwave vectors is allowed. For an-cell open-ended ladder,

of resonances of extended modes with both tynd type N+ 1 vertical and A horizontal junctions are present. Con-
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sidering linear oscillations of the vertical junctions, tNe
+1 cavity modes correspond to the wave numbers

0.6
I 205
- — 5 o
DTN & 5
E 04
with O<I=<N. ]
é 03
Ill. DC MODEL FOR ROTOBREATHERS 8 02
In this section, we briefly remind the reader of the previ- o1
ously obtained analytical relations for current-voltage char-
acteristics of rotobreathers in Josephson ladpgig10-12. 0
Herein, only DC effects are taken into account, while pos- )
sible interactions with linear modes are neglected. normalized voltage, v

For a single Josephson junction, the current-voltage char- FIG. 2. Experimental current-voltage characteristics 8flaro-

acteristics inR state is given by ~y/a, wherev=(¢) is  ;preather in a Josephson ladder. The curve was obtained by mul-
the normalized voltage. This does not change for a JosephsQfe cyrrent sweeps. The insets show magnifications of thedM

ladder with all vertical junctions iR state and all horizontal esonance branches. The branch corresponds to aAl roto-

junctions inSstate. However, for a breather state, the voltage,reather.

dropuv,=(¢) across a resistive vertical junction at fixed bias ) N ) o

current is lower than for a single uncoupled junction. Thisthat of Ref.[10] is the critical current density, which is sub-

can be easily understood since a part of the injected biagfantially lower, about 100 A/ctn .

current is flowing across the breather “boundaries,” that are Measurements were performed in liquid helium at a tem-

the neighboring horizontal junctions. perature off =4.2 K. We show data measured from a 10 cell
Using a network of resistorhe junctions inR stat¢ and ~ OPen-ended Josephson ladder of anisotrgpy0.49. At the

superconductorgjunctions in S state, the resistance of a measurement temperature, the critical current of a single ver-

breather state may be determined analytically. The verticaﬁ'Cal junction isl;=20.54A, and the self inductance of one

e cell is L=10pH, which translates to a discreteness param-
xg:iiggeg;%%vsvb?gstzﬁrg;;tg[eg 7?”6 's then related to theeter of B.=0.62. The junction capacitance =0.95 pF,

and the damping i&z=0.025. The bias current was injected
through resistors witliRg=32().
v _Y k 6) In the experiments, current-voltage curves of the Joseph-
U ak+ly’ son ladder were obtained by sweeping the uniformly sup-
plied bias currentg (injected through the nodes 1 and 2 in
wherek is the number of resistive vertical junctionss 2 for ~ Fig. 1) and measuring the voltage drdf3_, between nodes
type A breathers, and=1 for type B breathers. In this treat- 3 and 4. A breather state may be created in experiment by
ment, the bias resistors are assumed to be large in compatfcally applying a bias currenl between nodes 3 and 4.
son to the junction normal resistance. If this assumption i€once the breather is produced, is decreased to zero while
dropped, Eq(6) has to be modifiedl10,11]. I g is turned on. The creation procedure is described in detail
For a type A breather, the horizontal voltage drop i Ref.[7]. We found that such a local biasing usually leads
=y, due to Kirchhoff’s voltage law. For the type B breather, to the formation of a type B breather. For the formation of
the only constraint i® ,+%,=v, . In the simplest case, the type A breathers, an alternative biasing technifl@l was
absolute values of the upper- and lower-horizontal voltagesised: we apply a bias currehf between nodes 3 and 2,
are identical and equal to half of the vertical voltage. Yet thiswhich breaks the symmetry of upper- and lower-horizontal
is not always the rule. For the type A breather, we define theurrents. In a certain bias range, a type A breather is formed.
breather frequenc§)=v,, while for the type B breather, ThenT, is decreased ani} is increased, while the voltage
three different junction frequencieQ,=v, (vertica), Qn  drop V,_, is kept constant. While sweeping current-voltage
=v;, (upper horizonta| and(,=7,, (lower horizontal have  characteristics, the voltagés;_g between the edge nodes 5
to be considered. When frequency-dependent dissipatiomnd 6, as well as the upper- and lower-horizontal voltages,
e.g., due to resonances, sets in, deviations from the simpM,_s andV;_s were monitored.

ohmic current-voltage relatio(6) appear. Figure 2 shows a measured current-voltage characteristics
of the Josephson ladder in the presence Bflabreather at
IV. EXPERIMENTAL RESULTS the central site. This state was created in the standard way,

which was reported earligi7,10]. The normalized bias cur-
We performed experiments with niobium-based Josephrent y=1/I s the ratio of the overall ladder biasind the
son ladders fabricated at Hyprgky]. The layout{see Fig. 1  ladder critical current, ;=111 .=225uA. The normalized
(8] is almost identical to the one described in H&0]. The  voltage is v,=V3_4/Vy, where Vo=®/(27)w,
main difference of samples studied in the present paper frors=84.3uV.
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The curve exhibits a linear branch in the upper right re- ~

gion (v,>13) which continues at,~10 and atv,~5. The [IIIT
linear branch is merged with dominant, almost vertical steps
aroundv,~11.4(M region, and around ,~5.7 (L region.

An additional step occurs at,~3 (K region. This lowest L
branch corresponds to a typ&l breather that has been 0.7 -
proven by measuring upper- and lower-horizontal voltages.
All steps show hysteretic behavior when sweeping the bias
current up and down. Voltage jumps occur when the bias is
increased to the top of the step and when the bias is de-
creased at its bottom, as indicated by arrows. After decreas-
ing the bias current in th& branch, the voltage jumps to
zero, hence, all junctions migrate into tigestate. A fine
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structure is present on the voltage ste@ndM, as shown in 02 —
the insets. r 7

The voltage jumps shown in Fig. 2 are not always repro- L 38 T Il T
ducible. Occasionally, a state with larger size is picked up by ol 1 v 1 by by ]y
lowering the bias on th#1 branch(a part of such a branch is 6 2 4 6 8 10 12 14 16
shown in the figure aroungi~0.35 andv,~ 10). The jumps normalized voltage, v

from the “top” parts of the steps sometimes also result in
larger breather states, or even in the homogeneous Whirlingr
state of the whole ladder. From the top of thestep, the
voltage may jump to thé/l step, or to the linear branch at
larger voltage(not shown in the figure

TheK region, as shown in Fig. 2, is obtained very rarely
by lowering the bias current from thebranch. Typically, the  The breathers were placed into the center of the ladder, e.g.,
S state of the ladder is picked up instead. Using the alternapetween cells 5 and 6 for a ten-cell ladder.

FIG. 3. Simulated current-voltage characteristics of Ah
eather showing resonances in Weegion. The insets show the
temporal evolution of the normalized supercurrent ¢gn(solid
line), singg (dotted ling, sinije (dashed ling and sinyg (dash-
dotted line.

tive breather-creation method mentioned above, a #fpe The numerically found current-voltage characteristics
breather can be created in a more controlled way. Thereforghow the bias current per ladder nogleversus the normal-
the K region may be studied in detail. ized vertical junction voltage=v,=(¢,). Details about the

To complete this section of experimental results, we disnumerical routines we used may be found in R&g].
cuss the measured voltage positions of the observed steps. We simulated a ten-cell anisotropic Josephson ladder with
Most notably, the voltage positions of observed steps are apen boundaries and=0.025 andy=0.49. We have cho-
nearly integer multiples of each other. We observelttetep  sen to present here simulations performegBat0.37 that
atvk=2.90, thel step atv ~5.77=1.9%, and theM step  show a rich structure of cavity resonances and supplement
atvy~11.451.98 =39y . the experimental picture. Current-voltage curves were ob-

The measured step voltages also map remarkably well teained for both typeA1 andB1 breathers. The initial condi-
the analytic linear mode dispersion relation: From @jwe  tions were chosen for a bias current pf=0.8. After the
calculate the frequenay , (1 =2)=2.84 for the lowest mode relaxation of the system, the current was decreased down to
with a node in the center of the ladder, where the breather igero by decrements df y<10~“. When voltage jumps were
excited. This frequency agrees well with the measured norfound, the bias was increased to trace out resonances, exactly

malized voltage of th& step[vx=1.02w,(I=2)], as well  in the way as experimental curves were taken.
as thel andM steps, which coincide with the double and the  Figure 3 presents numerically obtained current-voltage
fourfold w, . characteristics for a1 type breather. There is ohmic be-

We argue that the observed voltage steps are resonandgavior forv =6, but several steps occur for 35 <6. The
of the breather with cavity modes of the ladder. They occulbhmic branch continues for lower voltages, and the ladder
when the frequency of a whirling junctidieither vertical, or  jumps to theSstate aty=0.089 and> = 1.69. The steps were
horizonta) coincides with one of the eigenfrequencies of thetraced out by increasing from the bottom of the steps.
junction array, or its integer multiples. Increasing the bias on the top of a step leads to a voltage
jump, either towards the ohmic branch, @or the lower
step$ to a higher step. Note that the type A solution is pre-
served after voltage jumps; a transition to a type B state is

To obtain more detailed information about the nature ofnot yet observed in this simulation.
the experimentally observed voltage steps, we numerically The insets in Fig. 3 show the time evolution of selected
integrated the set of equatiofi®) by a standard fifth-order supercurrentgequal to the sine of the phase differenoe
Runge-Kutta method with adaptive step-size control bythe ladder for a bias point on the ohmic branch and for a
Cash-Karp parametefd.9]. Breather solutions were gener- point at the peak of the most dominant step. On the ohmic
ated by starting the simulation from proper initial conditionsbranch atv=9.19, the picture is easily understood: At the
that lead to the relaxation of the system into the desired statéreather site, the vertical junction phaggis increasing lin-

V. NUMERICAL INVESTIGATIONS
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TABLE I. Numerical and analytical voltage positions of steps

observed in Fig. 3. 07
Step No. Voltage 4) w.(a) 06
1 3.57 2 3.59 Tg 05

2 3.87 4 3.90 3
3 4.22 6 4.26 g o4
4 4.53 8 4.58 é 0.3

5 4.88 unidentified ‘g
6 5.17 unidentified 0.2
7 5.42 unidentified o1
0

early in time, so are the horizontal phasgs and ¢ (the
latter is not shown in the pictureConsequently, the super- normalized voltage, v
current swings from-1 to 1. The other vertical junctions in _ o
e ladderare n the i state, vi-aicsiny, 10 % ST ST nlag s o
The situation is changed dramatically on the voltage step A gions..
. . ~same super-current time evolutions as in Fig. 3.
which can be clearly seen from the upper-left inset. The hori-
zontal and vertical junctionsutsidethe breather oscillate at
a frequency that is identical to the breather frequeficyA  gquency{}, is equal to the lattice frequenay, , which is
view at the spatial phase profile in the ladder reveals that &presented by the oscillations @f, while the horizontal
standing wave has formed. The different voltages of stepginction frequency(, is half of this value. In contrast, for
may be understood as resonances of the breather with cavithe L resonance$),=2w, , while the horizontal frequency
modes of different wave-numbegs. On=w, . As for the type A breather, the different steps in
In Table I, we list the voltage positions of the observedthe K and in theL range correspond to the locking of the
steps from Fig. 3, as well as the frequenciagich corre- respective breather frequencies to different cavity modes
spond to the normalized voltagealculated from Eq(4)  given by Eq.(5). Similar to the A breather case, we observe
using y=0.3. We note that only the lower four, clearly pro- additional resonances in tHe range around Qv <10.5,
nounced steps from the simulation may be mapped to thehich show a very strong back bending. The steps inkhe
dispersion relation. There, only the even cavity modes argegion and lower steps from theregion lie well within the
excited. This might be due to the requirement of a wave node . band and 2, band, respectively. The three upper steps
at the breather position, which is the center of the ladderin theL region are above the«2, band and cannot be iden-
Placing the breather away from the system center allows folified as simple cavity resonances.
the excitation of even and odd cavity modes also, which we An additional resonant voltage step nands observed
checked in additional simulations. The upper-three steps that v=13.5. Here, voltage is close tQ,~2w, and (),
show a peculiar back-bending shape do not coincide with=4w ., . Therefore, it might be identified as a parametric
any of the cavity mode frequencies. In fact, their voltageresonance of the breather and the linear waves, as described
ranges even above the, band, which lies between 3.47 in Ref.[12]. However, theM step lies within the 3, band,
<w,<4.78. Further inquiry on the nature of these reso-but slightly below the 4, band. The observed stefisand
nances is required. L may be mapped to the dispersion relation similar to the
As may be expected, the picture gets more complex fotype Al breather resonances. The results are shown in Table
the typeB1 breather. The frequencies of the vertical andll. The peculiarM step, which is observed both in simulation
horizontal whirling junctions differ, thus, more resonances
W'th cavity modes may be observed.. Ir_' Fig. 4, we plot the TABLE II. Numerical and analytical voltage positions of steps
simulated current-voltage characteristics for a tyB&  gpserved in Fig. 4.
breather in a Josephson ladder with parameters as described
above. On this curve, three regions with resonant voltag&tep  \oltage Multiplier —Base voltage qf) . (q))
steps are present, which we identify lesL, andM. As for

the typeAl breather, voltage jumps from the top of stepsK1 3.86 1 3.86 4 3.90
may target on the ohmic branch, or on neighboring resonancé? 4.21 1 4.21 6 4.26
steps, depending on their current amplitude. We frequentiy:1 7.11 2 3.55 2 3.59
observe an increase of the breather size after voltage jumpls2 7.68 2 3.84 4 3.90
mainly from the resonances in theand M regions. This L3 8.39 2 4.19 6 4.26
behavior was also observed in the experiments. L4 9.72 2 4.86 unidentified

Information on the spatiotemporal dynamics on someL5 9.73 2 4.87 unidentified
voltage steps may again be obtained from the insets of Fig. 4.6 10.46 2 5.23 unidentified
The supercurrents are plotted as in the insets from Fig. 3. 1 13.58 4 3.40 unidentified

is clear that for theK resonances, theertical junction fre-
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and experiment, cannot be explained within our easy model. Experiments, which were performed at a higher value of

It has to be noted that thd step is obtained in our simula- the discreteness, showed resonances between breathers and
tion only in the absence of any numerical noise, or smallinear modes only for small wave vectors. This behavior is
deviations from the initially symmetri®1 breather state. reproduced by simulations conducted at the corresponding
Preliminary investigations indicate that the resonahtés larger discreteness parameter. In experiment, a fine structure
accompanied by an unstable symmeBIt state[20]. was observeduperimposedn the resonance branches. This

The discussed resonances in el, and M range are feature is not yet understood and also not reproduced in
very similar to that observed in experiment. Due to the dif-simulations.
ferent values of,, the normalized voltage positions are  Future experiments should survey the existence ranges of
different in experiment and simulation. The respective stefpreather resonances. Different lattice oscillation wave vec-
positions are however predicted rather precisely from thédors could be stabilized by tuning the external magnetic field,
analytic dispersion relatiof¥). Additional simulations were hence, breather resonances may be expected to shift in volt-
performed usingB, =0.62, which closely conforms to the age with the field. Furthermore, the direct observation of the
experimental value. These show resonant steps only at thgave numbers should be possible by low-temperature scan-
low end of thew, band, as observed in the experiment.  ning laser microscopy7]. Such experiments have been al-

ready done for Fiske steps in distributed superconducting
VI. CONCLUSIONS structures[21,22. A spectroscopy of the resonant breather
states might lead to insight on phonon-breather interaction in

We presented experimental observation of resonances bgosephson ladders. In addition, the radiation absorption and
tween discrete breathers and extended linear electromagnetignission from resonant breathers in ladders might not only
excitations of Josephson ladders. Their resonant interactioge ysed as a diagnostic tool, but possibly also lead to inter-
leads to large voltage steps on current-voltage characteristigsting applications such as submillimeter wave antennas or
of the ladders. sources.

Numerical simulations that we also performed show a
good agreement with experiment. The dispersion relation for
small-amplitude linear waves allows to rather prec_;i_sely pre- ACKNOWLEDGMENTS
dict both measured and simulated resonance positions.
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